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Abstract. We give a new, simulation-based, definition for security in
the bounded-quantum-storage model, and show that this definition al-
lows for sequential composition of protocols. Damg̊ard et al. (FOCS ’05,
CRYPTO ’07) showed how to securely implement bit commitment and
oblivious transfer in the bounded-quantum-storage model, where the ad-
versary is only allowed to store a limited number of qubits. However,
their security definitions did only apply to the standalone setting, and it
was not clear if their protocols could be composed. Indeed, we show that
these protocols are not composable in our framework without a small
refinement. We then prove the security of their randomized oblivious
transfer protocol with our refinement. Secure implementations of oblivi-
ous transfer and bit commitment follow easily by a (classical) reduction
to randomized oblivious transfer.

1 Introduction

Secure two-party computation [1] allows two mutually distrustful players to
jointly compute the value of a function without revealing more information
about their inputs than can be inferred from the function value itself. The prim-
itive known as oblivious transfer (OT) [2–4] is thereby of particular importance:
any two-party computation can be implemented, if this primitive is available
[5, 6]. Another important primitive in this context is bit commitment (BC) [7].
But since bit commitment can be implemented from oblivious transfer, a direct
implementation of bit commitment is only important if we cannot implement
oblivious transfer itself, or if we want to improve efficiency. In oblivious transfer,
the sender (Alice) chooses two bits x0 and x1, the receiver (Bob) chooses a bit
c. The protocol of oblivious transfer allows Bob to retrieve xc in such a way
that Alice cannot gain any information about c. At the same time, Alice can be
ensured that Bob only retrieves xc, but no information about x1−c.

Unfortunately, BC and OT are impossible to implement securely without
any additional assumptions, even in the quantum model [8, 9]. This result holds
even in the presence of the so-called superselection rules [10]. Exact trade-offs on
how well we can implement BC in the quantum world can be found in [11]. To
circumvent this problem (classically and quantumly), we thus need to assume
that the adversary is limited. In the classical case, one such limiting assumption
is that the adversary is computationally bounded. In the quantum model, it is



also possible to securely implement both protocols provided that an adversary
cannot measure more than a fixed number of qubits simultaneously [12]. String
commitments can be obtained with very weak security parameters [13].
The Bounded-Quantum-Storage Model. In the quantum case, it is very difficult
to store states even for a very short period of time. This leads to the protocol
presented in [14, 15], which show how to implement BC and OT if the adver-
sary is not able to store any qubits at all. In [16, 17], these ideas have been
generalized to the bounded-quantum-storage model, where the adversary is com-
putationally unbounded and allowed to have an unlimited amount of classical
memory. However, he is only allowed a limited amount of quantum memory. The
honest players do not require any quantum storage at all, making the protocols
implementable using present day technology.
Security Definitions and Composability. As cryptographic protocols are almost
never executed on their own, it is important that they remain secure when
they are composed. [18–20] introduced simulation-based security definitions and
showed that they can be composed sequentially, i.e, at any point in time at
most one protocol is running. A stronger security definition called universal
composability has been introduced in [21–23]. It guarantees that protocols can
be securely composed in an arbitrary way (also concurrently) in any environment.

Based on earlier an earlier definition of security in the quantum setting [24], a
simulation-based security definition has been presented in [25], however no com-
posability theorem was proven. Universal composability in the quantum world
has been introduced in [26], and independently in [27]. In [28], it has been shown
that classical protocols are universally composable using their classical defini-
tions, are secure against quantum adversaries.

1.1 Contribution

In [17], protocols for OT and BC have been presented and shown to be secure
against adversaries who have bounded quantum storage. However, the proofs
only guarantee security in a standalone setting, and it was not clear whether
these protocols remain secure when they are composed with other protocols.
Indeed, the following simple example shows that in some situations, the protocols
presented in [16, 17] do not guarantee security in a strong sense. (However, Fehr
and Schaffner [29] recently showed that the original definitions still allow for some
weak form of composability.) Suppose the adversary receives a large number of
halves of EPR-pairs from the environment as his auxiliary input. He can then
effectively enlarge his own quantum memory by teleporting quantum states to
the environment, which has unlimited memory. The classical communication
needed to teleport can be part of the adversary’s classical storage that he later
outputs. In the case of the protocol presented in [17] (where the security depends
on the fact that the adversary does not know in which basis to measure before his
quantum memory bound is applied) this allows the environment to distinguish
easily between the real and the ideal setting.

We present a formal model for secure two-party computation in the bounded-
quantum-storage model and show that our model implies that secure protocols



are sequentially composable. Then, we slightly modify the protocol for random-
ized OT presented [17] by introducing a second memory bound and prove the
security of the protocol in our model.

In the full version of this work, we give well-known classical reductions of
BC and OT to randomized OT. An important consequence is that any secure
function evaluation can be achieved in the bounded-quantum-storage model.
This follows from the fact that the proof of [28] carries over to our model,
which means that any classical protocol that is secure in the classical universal
composability model is also secure in our model. Therefore, we can use the
protocol from [30] (based on [6]) to implement any secure function evaluation 3.

2 Preliminaries

We use the term computational basis to refer to the basis given by {|0〉, |1〉}.
We write + for the computational basis, and let |0〉+ = |0〉 and |1〉+ = |1〉.
The Hadamard basis is denoted by ×, and given by {|0〉×, |1〉×}, where |0〉× =
(|0〉 + |1〉)/

√
2 and |1〉× = (|0〉 − |1〉)/

√
2. For a string x ∈ {0, 1}n encoded in

bases b ∈ {+,×}n, we write |x〉b = |x1〉b1 , . . . , |xn〉bn
. We also use 0 to denote

+, and 1 to denote ×. Finally, we use x|c to denote the sub-string of an encoded
string x consisting of all xi where bi = c.

We use the font A to label a quantum register, corresponding to a Hilbert
space A. A quantum channel from A to B is a completely positive trace preserv-
ing (CPTP) map Λ : A → B. We also call a map from A to itself a quantum
operation. Any quantum operation on the register A can be phrased as a unitary
operation on A and an additional ancilla register A′, where we trace out A′ to
obtain the actions of the quantum operation on register A [32]. We use S(A) to
refer to the set of all quantum states in A, and T(A) to refer to the set of all
Hermitian matrices in A. We use U to refer to a quantum operation, upper case
letters X to refer to classical random variables, the font S for a set, and the font
A to refer to a player in the protocol.

Our ability to distinguish two quantum states ρ, ρ′ ∈ S(H) is determined by
their trace distance defined as D(ρ, ρ′) := 1

2 Tr |ρ− ρ′|, where |A| =
√
A†A. The

triangle inequality holds. I.e., for all ρ, ρ′ and ρ′′, we have D(ρ, ρ′′) ≤ D(ρ, ρ′) +
D(ρ′, ρ′′). We also write ρ ≡ε ρ′, if D(ρ, ρ′) ≤ ε. For all practical purposes,
ρ ≡ε ρ means that the state ρ′ behaves like the state ρ, except with probability
ε [33]. For any quantum channel Λ, we have D(Λ(ρ), Λ(ρ′)) ≤ D(ρ, ρ′). Let
ρAB ∈ S(A⊗ B) be classical on A, i.e. ρAB =

∑
x∈X PX(x)|x〉〈x| ⊗ ρx for some

distribution PX over a finite set X . We say that A is ε-close to uniform with
respect to B, if D(ρAB , IA/d⊗ ρB) ≤ ε, where d = dim(HA).

For random variables X and Y with joint distribution PXY , the smooth con-
ditional min-entropy [34] can be expressed in terms of an optimization over
events E occurring with probability at least 1− ε. Let PXE|Y=y(x) be the proba-
bility that {X = x} and E occur conditioned on Y = y. We have Hε

min(X|Y ) =
3 Note that because our implementation of OT is physical, the results presented in

[31] cannot be applied, as explained in [30] on page 11.



maxE:Pr(E)≥1−ε miny minx(− logPXE|Y=y(x)).The smooth min-entropy allows us
to use the following chain rule.

Lemma 1 (Chain Rule [34]). For all random variables X, Y , Z and for all
ε, ε′ > 0, Hε+ε′

min (X|Y Z) ≥ Hε
min(XY | Z)− log |Y| − log(1/ε′).

We also need the monotonicity of the smooth min-entropy, Hε
min(XY | Z) ≥

Hε
min(X | Z). A function h : S × X → {0, 1}` is called a two-universal hash

function [35], if for all x0 6= x1 ∈ X, we have Pr[h(S, x0) = h(S, x1)] ≤ 2−` if S
is uniform over S. We thereby say that a random variable S is uniform over a
set S if S is chosen from S according to the uniform distribution. The following
theorem is from [17], stated slightly differently than in [33, 36].

Theorem 1 (Privacy Amplification [33, 36]). Let X and Z be (classical)
random variables distributed over X and Z, and let Q be a random state of q
qubits. Let h : S × X → {0, 1}` be a two-universal hash function and let S be
uniform over S and independent from X and Z. If ` ≤ Hε′

min(X | Z) − q −
2 log(1/ε), then h(S,X) is (ε+ 2ε′)-close to uniform with respect to (S,Z,Q).

The following lemma that we prove in the full version follows from the un-
certainty relation presented in [17].

Lemma 2. Let X ∈ {0, 1}n be a uniform random string, let B ∈ {+,×}n be a
uniform random basis. Let |X〉B = (|X1〉B1 , . . . , |Xn〉Bn

) be a state of n qubits,
and let K be the outcome of an arbitrary measurement of |X〉B, which does not

depend on X and B. Then, for any ε, we have Hε
min(X|BK) ≥ n

2 −10 3

√
n2 log 1

ε ,
which is positive if n > 8000 log(1/ε).

3 Security in the Bounded-Quantum-Storage Model

We now give a definition of offline-security in the bounded-quantum-storage
model, and show that it allows protocols to be composed sequentially (at any
given time only one sub-protocol is executed). More detail can be found in the
long version of our paper. Our definitions are closely related to [25].

We look at the following setting: Two players, A and B, execute a protocol
P = (PA,PB), where PA is the program executed by A and PB the program exe-
cuted by B. Before the first round, each program receives an input (that might be
entangled with the input of the other player) and stores it. In each round, each
program may first send/receive messages to/from a given functionality G, then
apply a quantum operation to its current internal storage (including the message
space), and finally send/receive further messages at the end of each round. G
defines the communication resources available between the players, modeled as
an interactive quantum functionality. It may contain a classical and/or a quan-
tum communication channel, or other functionalities such as oblivious transfer
or bit commitment. Finally, in the last step of the protocol each program outputs
an output value. The execution of P using G (denoted by P(G)) is a quantum
channel, which takes the input of both parties to the output of both parties.



Players may be honest, which means that they follow the protocol, or they
may be corrupted. All corrupted players belong to the adversary, A ⊂ {A,B}.
Note that we can ignore the case where both players are corrupted. To simplify
the proofs, we assume the set A to be static, i.e., it is already fixed before the
protocol starts. We take the adversary to be active, i.e., he may not follow the
protocol. The adversary A = {p} may replace his part of the protocol Pp by an-
other program Ap. Opposed to Pp, Ap receives some auxiliary (quantum) input
at the start of the protocol that may also be entangled with the environment.
This input can be given to the adversary from the environment, but also come
from the output of an honest player from a previous run of the protocol. At
the end of the protocol, the adversary may return a (quantum) output to the
environment. There is no communication between the adversary and the envi-
ronment between the beginning and the end of the protocol. After receiving the
(quantum) output, the environment tries to distinguish the protocol from the
ideal setting based on its knowledge of its own input and output to and from
the adversary.

We do not restrict the computational power of Ap in any way, however we
do limit its internal quantum storage to a certain memory-bound of m qubits.
We call such an Ap m-bounded. Ap is allowed to perform arbitrary quantum
operations in each round of the protocol. However after receiving his input, and
after every round, all of his internal memory is measured, except for m qubits.
He may, however, store an unlimited amount of classical information.

The ideal functionality, denoted by F, defines what functionality we expect
the protocol to implement. In this paper, we only consider non-interactive func-
tionalities, i.e., both players can send it input only once at the beginning, and
obtain the output only once at the end. These functionalities have the form of a
quantum channel. To make the definitions more flexible, we allow F to look dif-
ferently depending on whether both players are honest, or either A or B belongs
to the adversary. So the ideal functionality is in fact a collection of functionali-
ties, F = (F∅,F{A},F{B}). F∅ denotes the functionality for the case when both
players are honest, and F{A} and F{B} for the cases when A or B respectively
are dishonest. As a honest player does not know whether the other player is also
honest or not, we require that F{A} (F{B}) and F{∅} must look the same from
him. We also require that F{A} and F{B} allow the adversary to play honestly,
i.e., they must be at least as good for the adversary as the functionality F∅.

As we formally define in the long version, we say that a protocol P having
access to the functionality G implements a functionality F, if the following con-
ditions are satisfied: First of all, we require that output of the protocol is ε-close
to that of F, if both players are honest. Second, for A = {p}, we require that
the adversary attacking the protocol has basically no advantage over attacking
F directly. We thus require that for every m-bounded program Ap, there exists
an s-bounded program Sp (called the simulator), such that the overall outputs
of both situations are ε-close, for all inputs. For simplicity, we do not make any
restrictions on the efficiency of the simulators4. Also, we do not require him to

4 Recall the adversary is computationally unbounded as well.



use the adversary Ap as a black-box: Sp may be constructed from scratch, under
full knowledge of the behavior of Ap.

It is important to note that we allow the simulator to execute some or all
actions of Ap in a single round. This will allow the simulator to execute Ap

without a memory bound being applied: Recall, that a memory bound is applied
only after each round. This model is motivated by the physically realistic as-
sumption that such memory bounds are introduced by adding specific waiting
times after each round. Since the adversary is computationally unbounded, he
would essentially also be able to perform any computation before the memory
bound is applied and hence the simulator does not gain any more powers than
the adversary. In particular, this does not give the simulator any memory.

However, in order to make protocols composable with other protocols in our
model, we do require the simulator to be memory-bounded as well. The amount
of memory required by the simulator gives a bound on the virtual memory the
adversary seems to have by attacking the real protocol instead of the ideal one.
Ideally, we would like Sp to use the same amount of memory as Ap.

An important property of our definition is that it allows protocols to be
composed. The following theorem shows that in a secure protocol that is based
on an ideal, non-interactive functionality G and some other functionalities G′, we
can replace G with a secure implementation of G, without making the protocol
insecure. We thereby denote the concatenation of the functionalities G and G′

by G‖G′. The theorem requires that G is called sequentially, i.e., that no other
sub-protocols are running parallel to G. The proof uses the same idea as in the
classical case [20].

Theorem 2 (Sequential Composition Theorem). Let F and G be non-
interactive, and G′ and H arbitrary functionalities. Let P(G‖G′) be a protocol
that calls G sequentially and that implements F with error at most ε1 secure
against m1-bounded adversaries using s1-bounded simulators, and let Q(H) be
a protocol that implements G with error at most ε2 secure against m2-bounded
adversaries using s2-bounded simulators, where m2 ≥ s1. Then P(Q(H)‖G′)
implements F with error at most ε1 + ε2, secure against min(m1,m2)-bounded
adversaries using s2-bounded simulators.

4 Randomized Oblivious Transfer

We now apply our framework to the randomized OT protocol presented in [16]. In
particular, we prove security with respect to the following definition of random-
ized oblivious transfer. We show in the long version how to obtain the standard
notion of OT from randomized OT. Note that in our version of randomized OT,
also the choice bit c of the receiver is randomized.

Definition 1 (Randomized oblivious transfer).
(
2
1

)
-ROT` (or, if ` is clear

from the context, ROT) is defined as ROT = (ROT∅,ROT{A},ROT{B}), where

– ROT∅: The functionality chooses uniformly at random the value (x0, x1) ∈R
{0, 1}2` and c ∈R {0, 1}. It sends (x0, x1) to A and (c, y) to B where y = xc.



– ROT{A}: The functionality receives (x0, x1) ∈ {0, 1}2` from A. Then, it
chooses c ∈R {0, 1} uniformly at random and sends (c, y) to B, where y = xc.

– ROT{B}: The functionality receives (c, y) ∈ {0, 1} × {0, 1}` from B. Then,
it sets xc = y, chooses x1−c ∈R {0, 1}` uniformly at random, and sends
(x0, x1) to A.

The protocol BQS-OT = (BQS-OTA,BQS-OTB) uses a noiseless unidirec-
tional quantum channel Q-Comm, and a noiseless unidirectional classical channel
Comm, both from the sender to the receiver. Let h : R × {0, 1}n → {0, 1}` be
a two-universal hash function. A memory bound is applied before step 1, and
between step 2 and 3. The sender (A) and receiver (B) execute:

Protocol 1: BQS-OTA

1. Choose x ∈R {0, 1}n and b ∈R {0, 1}n uniformly at random.
2. Send |x〉b := (|x1〉b1 , . . . , |xn〉bn) to Q-Comm, where |xi〉bi is xi encoded

in the basis bi.
3. Choose r0, r1 ∈R R uniformly at random and send (b, r0, r1) to Comm.
4. Output (s0, s1) := (h(r0, x|0), h(r1, x|1)), where x|j is the string of all xi

where bi = j.
Protocol 2: BQS-OTB

1. Choose c ∈R {0, 1} uniformly at random.
2. Receive the qubits (q1, . . . , qn) from Q-Comm and measure them in the

basis c, which gives output x′ ∈ {0, 1}n.
3. Receive (b, r0, r1) from Comm.
4. Output (c, y) := (c, h(rc, x′|c)), where x′|c is the string of all x′i where
bi = c.

Security against the sender. We first consider the case when the sender, A, is
dishonest. This case turns out to be quite straightforward and closely follows the
proof given in [17]. We use the following letters to refer to the different classical
and quantum registers available to the adversary: Let Q denote the quantum
register. Note that since we assume that our adversary’s memory is m-bounded,
the size of Q does not exceed m. Let MQ and MK denote the quantum and
classical registers, that hold the messages sent to the receiver. Let K denote
the classical input register of the adversary. Finally, let A denote an auxiliary
quantum register. Recall from Section 2, that any quantum operation on Q
and MQ can be implemented by a unitary followed by a measurement on an
additional register A. Wlog we let A andMQ be measured in the computational
basis to enforce a memory bound, and Q be the sole quantum memory.

To model quantum and classical input that a malicious A may receive, we let
Q start out in any state ρin, unknown to the simulator. Likewise, K may contain
some classical input kin of A. Wlog we assume that all other registers start out
in a fixed state of |0〉. We can then describe the actions of A by a single unitary
AA defined by

AA( ρin︸︷︷︸
Q

⊗ |0〉〈0|︸ ︷︷ ︸
A

⊗ kin︸︷︷︸
K

⊗ |0〉〈0|︸ ︷︷ ︸
MQ

⊗ |0〉〈0|︸ ︷︷ ︸
MK

)A†A = ρout︸︷︷︸
Q,A

⊗ kin︸︷︷︸
K

⊗ ρxb︸︷︷︸
MQ

⊗ |br0r1〉〈br0r1|︸ ︷︷ ︸
MK

.



Note that without loss of generality AA leaves K unmodified: since K is classical
we can always copy its contents to A and let all classical output be part of A.
To enforce the memory bound, assume wlog that A andMQ are now measured
completely in the computational basis. We now show that for any adversary AA

there exists an appropriate simulator SA.

Lemma 3. Protocol BQS-OT is secure against dishonest A.

Proof. Let SA be defined as follows: SA runs AA. Note that SA can effectively
skip the wait time required for the memory bound to take effect, since he can
execute AA in one round before his memory bound is applied, where we refer
to Section 3 for an important discussion and justification of this procedure. The
simulator then measures register MQ in the basis determined by MK . This
allows him to compute s0 = h(r0, x|0) and s1 = h(r1, x|1). SA then sends s0
and s1 to ROT{A}. It is clear that since the simulator based his measurement
on MK , s0 and s1 are consistent with the run of the protocol. Furthermore,
note that SA did not need to touch register Q at all. We can thus immediately
conclude that the environment can tell no difference between the real protocol
and the ideal setting. ut

Security against the receiver. The proof of security against a dishonest receiver
requires a more careful treatment of the quantum input given to the adversary.
The main idea behind our proof is that the memory bound in fact fixes a classical
bit c. Our main challenge is to find a c that the simulator can calculate and that
is consistent with the adversary and his input, while keeping the output state
of the adversary intact. To do so, we use a generalization of the min-entropy
splitting lemma in [17], which in turn is based on an earlier version of [37]. It
states that if two random variables X0 and X1 together have high min-entropy,
then we can define a random variable C, such that X1−C has at least half of
the original min-entropy. To find C, one must know the distributions of X0 and
X1. In the following generalization, we do not exactly know the distribution of
X0 and X1, since we assume that its distribution also depends on an unknown
random variable J , distributed over a domain of the size 2β . β = 0 gives the
min-entropy splitting lemma in [17].

Lemma 4 (Generalized Min-Entropy Splitting Lemma). Let ε ≥ 0, and
0 < β < α. Let J be a random variable over {0, . . . , 2β − 1}, and let X0, X1 and
K be random variables such that Hε

min(X0X1 | KJ) ≥ α. Let f(x1, k) = 1, if
there exists a j ∈ {0, . . . , 2β − 1} such that PX1|KJ(x1, k, j) ≥ 2−(α−β)/2, and 0
otherwise, and let C := f(X1,K). We have Hε

min(X1−CC | KJ) ≥ α−β
2 .

Proof. Let Sjk be the set of values x1 for which PX1|KJ(x1, k, j) ≥ 2−(α−β)/2.
We have |Sjk| ≤ 2(α−β)/2, since all values in Sjk have a probability that is at least
2−(α−β)/2. Let Sk :=

⋃
j S

j
k. We have |Sk| ≤ 2β · 2(α−β)/2 = 2(α+β)/2.

LetK = k and J = j. Because C = 0 implies thatX1 6∈ Sk, and thus also that
X1 6∈ Sjk, we have PX1C|KJ(x1, 0, k, j) < 2−(α−β)/2. It follows from the assump-
tion that there exists an event E with probability 1− ε such that for all x0, x1,



k and j, we have PX0X1E|KJ(x0, x1, k, j) ≤ 2−α. Hence PX0CE|KJ(x0, 1, k, j) =∑
x1∈Sk

PX0X1E|KJ(x0, x1, k, j) ≤ 2(α+β)/2 · 2−α = 2−(α−β)/2 . ut

We now describe the actions of the adversary. Let M denote the register
holding the quantum message he receives from the sender in step 2. Let his
registers Q, A and K be initialized as above. We can now describe the actions
of the adversary by two unitaries, where a memory bound is applied after the
first. The action of the adversary following step 2 can be described as a unitary
A(1)

B as before. Note we can again assume that A(1)
B leaves K unmodified. To

enforce the memory bound, we now let register M and A be measured in the
computational basis. We use ρout ∈ Q to denote the adversary’s quantum output,
and kout ∈ M ⊗ A to denote his classical output. After the memory bound is
applied, the receiver obtains additional information from the sender. The actions
of the adversary after step 3 can then be described by a unitary A(2)

B followed
by a measurement of quantum registers M and A in the computational basis.

First, we analyze the case where the adversary’s auxiliary quantum input is
a pure state of β qubits. Note that this means that the adversary cannot be
entangled with the environment. Then we extend it, by allowing the adversary
some arbitrary mixed quantum auxiliary input.

Lemma 5. Protocol BQS-OT is secure against dishonest B with an error of at
most 5ε, if he receives a pure state quantum (auxiliary) input, and his quantum
memory is bounded before step 1 by β qubits, and between step 2 and 3 by m

qubits, for 8`+ 2β + 4m ≤ n− 20 3

√
n2 log 1

ε − 12 log 1
ε − 4.

Proof. Let Kin be the classical auxiliary input the adversary receives, and let
|j〉 for j ∈ {0, . . . , 2β − 1} be a basis for the quantum auxiliary input. Any
fixed auxiliary input |j〉 and kin fixes a distribution PX0X1K|J=j , where K is the
classical value the adversary has after second memory bound. The choice of input
state |Ψin〉 thus defines the distribution of J . First of all, the simulator simulates
the actions of the sender following steps 1 and 2, using a random string X and a
random basis B. The simulator then applies A(1)

B , which gives him some classical
output Kout, and a quantum state ρout. It follows from the uncertainty relation
of Lemma 2 that Hε

min(X | BKoutKin) ≥ α for α := n/2− 10 3
√
n2 log(1/ε). Let

(X0, X1) := X, where X0 := X|0 and X1 := X|1 are the substrings of X defined
in the same way as in the protocol.

It follows from Lemma 4 and the fact that the simulator holds a description
of A(1), K = (B,Kout,Kin) and X0, X1 that he can calculate the value C :=
f(X1,K). This means that the simulator can construct a linear transformation
SB acting on registers Q,M, A, K, X , B, R, and C combining the actions of A(1)

A

and the choice of c using the function f as defined in the min-entropy splitting



Lemma 4. We have

SB(
∑
j

αj |j〉︸︷︷︸
Q

⊗ |xb〉︸︷︷︸
M

⊗ |0〉︸︷︷︸
A

⊗ |kin〉︸︷︷︸
K

⊗ |x〉︸︷︷︸
X

⊗ |b〉︸︷︷︸
B

⊗ |r0, r1〉︸ ︷︷ ︸
R

⊗ |0〉︸︷︷︸
C

⊗ |0〉︸︷︷︸
Y

) =

∑
q,m1,a1

αq,m1,a1 |q〉︸︷︷︸
Q

⊗ |m1〉︸︷︷︸
M

⊗ |a1〉︸︷︷︸
A

⊗ |kin〉︸︷︷︸
K

⊗ |x〉︸︷︷︸
X

⊗ |b〉︸︷︷︸
B

⊗ |r0, r1〉︸ ︷︷ ︸
R

⊗ |c〉︸︷︷︸
C

⊗ |s0, s1〉︸ ︷︷ ︸
Y

)

for any pure state input |Ψin〉 =
∑
j αj |j〉. Wlog, all registers except Q are now

measured in the computational basis as the memory bound takes effect. It is an
important consequence of our generalized min-entropy splitting lemma that the
simulator can measure register C in the computational basis to extract c without
causing any disturbance to the quantum output: Note that the definition of f did
not take j into account explicitly and hence C is not entangled with the quan-
tum output. From Lemma 4 we thus have that Hε

min(X1−CC | K) ≥ α−β
2 .

The simulator now chooses R0 and R1 uniformly at random and calculates
S0 = h(R0, X0) and S1 = h(R1, X1). Since R0 and R1 are independent of
X0, X1 and C, we have Hε

min(X1−CC | K) = Hε
min(X1−CC | RCK). Us-

ing the chain rule from Lemma 1 and the monotonicity of Hε
min, we obtain

H2ε
min(X1−C | CRCKSC) ≥ α−β

2 − ` − 1 − log 1
ε . By using the privacy ampli-

fication Theorem 1, we get that S1−C is 5ε close to uniform with respect to
(R0, R1, C, SC , B,Kout,Kin) and ρout if ` ≤ α−β

2 − `− 1− log 1
ε −m− 2 log 1

ε .
By replacing α and rearranging the terms we get the claimed equation.

The simulator now sets Y := SC , and sends (C, Y ) to ROT{B}. To complete
the simulation, he runs A(2)

A as the adversary would have. Note that the simulator
did not require any more memory than the adversary itself, i.e., we can take SB

to be m-bounded as well. Clearly, the simulator determined C solely from the
classical output of the adversary and thus the adversary’s output state in the
simulated run is equal to the original output state of the adversary ρout ⊗ kout.
Since the only difference between the simulation and the real execution is that in
the simulation, S1−C is chosen completely at random, the simulation is 5ε-close
to the output of the real protocol. ut

It remains to address the case where the receiver gets a mixed state quantum
input. This is the case where the adversary receives a state that is entangled with
the environment. Note that this means that we must decrease the size of the
adversary’s memory: If he could receive an entangled state of β qubits as input,
he could use it to increase his memory to m+ β qubits by teleporting β qubits
to the environment, and storing the remaining m. Hence, we now have to take
the adversary to be m′-bounded, where m′ := m− β. Luckily, using a a similar
argument as in [38], we can now extend the argument given above: Note that
for any pure state input |Ψ〉 = |Ψin〉⊗ kin, the output of the simulated adversary
is exactly Λ(|Ψ〉〈Ψ |), where Λ is the adversary’s channel. Since {|Ψ〉〈Ψ |||Ψ〉 ∈
Q ⊗ K, ‖|Ψ〉‖ = 1} spans all of T(Q⊗ K) and the map given by the simulation
procedure is the same as Λ on all inputs, we can conclude that the complete map
is equal to Λ. Note that the simulator does not need to consider the β qubits



that the adversary might have teleported to the environment: we can essentially
view it as part of the original adversary’s quantum memory, and the simulator
bases his decision solely on the classical output of the adversary. Hence,

Theorem 3. Protocol BQS-OT(Q-Comm‖Comm) implements
(
2
1

)
-ROT` with an

error of at most 5ε, secure against m-bounded adversaries using m-bounded sim-

ulators, if 8`+ 10m ≤ n− 20 3

√
n2 log 1

ε − 12 log 1
ε − 4.
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