
Oblivious Transfer is Symmetric

Stefan Wolf Jürg Wullschleger

Computer Science Department, ETH Zürich, Switzerland.
{wolf,wjuerg}@inf.ethz.ch

Abstract. We show that oblivious transfer of bits from A to B can
be obtained from a single instance of the same primitive from B to A.
Our reduction is perfect and shows that oblivious transfer is in fact a
symmetric functionality. This solves an open problem posed by Crépeau
and Sántha in 1991.

1 Introduction

Modern cryptography is an increasingly broad discipline and deals with many
subjects besides the classical tasks of encryption or authentication. An example
is multi-party computation, where two or more parties, mutually distrusting each
other, want to collaborate in a secure way in order to achieve a common goal, for
instance, to carry out an electronic election. An example of a specific multi-party
computation is secure function evaluation, where every party holds an input to
a function, and the output should be computed in a way such that no party has
to reveal unnecessary information about her input.

A primitive of particular importance in the context of two- and multi-party
computation is oblivious transfer. In classical Rabin oblivious transfer [18] or
Rabin OT for short, one of the parties—the sender—sends a bit b which reaches
the receiver with probability 1/2; the sender hereby remains ignorant of about
whether the message has arrived or not. In other words, Rabin OT is nothing else
than a binary erasure channel. Another variant of oblivious transfer is chosen
one-out-of-two oblivious transfer—

(
2
1

)
−OT for short—, where the sender sends

two bits b0 and b1 and the receiver’s input is a choice bit c; the latter then
learns bc but gets no information about the other bit b1−c. Chosen one-out-of-
two oblivious transfer can be generalized to a primitive where the sender sends
n messages, k of which the receiver can choose to read: chosen k-out-of-n l-bit
string oblivious transfer or

(
n
k

)
−OTl. One reason for the importance of oblivious

transfer is its universality, i.e., it allows, in principle, for carrying out any two-
party computation [13].

Besides computational cryptographic security, which is based on the assumed
hardness of certain computational problems and a limitation on the adversary’s
computing power, there also exists unconditional security, which is based on the
fact that the information the potential adversary obtains is limited. This latter
type of security withstands attacks even by a computationally unlimited adver-
sary; clearly, it is, a priori, more desirable to realize cryptographic primitives

in such an unconditionally secure way. Unfortunately, oblivious transfer is im-
possible to achieve in an unconditionally secure way from scratch, i.e., between
parties connected by a noiseless channel; in fact, not even if this is a quan-
tum channel over which the parties can exchange not only “classical” bits but
quantum states [14]. However, if some additional weak and realistic primitives
are available such as noisy channels and noisy correlations, then unconditional
security can be often achieved [6], [5], [7], [12], [21], [22].

Another way of realizing unconditionally secure oblivious transfer is from (a
weaker form of) oblivious transfer itself: All the variants of oblivious transfer
have been shown equivalent to different extents. For instance,

(
2
1

)
−OT can be

reduced to m realizations of Rabin OT as long as a failure probability of 2−m can
be accepted [4]. On the other hand,

(
2
1

)
−OTl can be reduced to Θ(l) realizations

of
(
2
1

)
−OT—with or without failure probability, where the reduction can be

made more efficient in terms of the hidden constant if a small probability of
failure can be accepted [3]. In [1], a protocol was presented that reduces

(
2
1

)
−OT

to a
(
2
1

)
−OT being available at an earlier point in time. This means that

(
2
1

)
−OT

can be precomputed (or stored and used at any time later).
In [17] and [8], methods were proposed for obtaining

(
2
1

)
−OT from A to B

from n instances of
(
2
1

)
−OT from B to A, where a failure probability of 2−Θ(n)

has to be tolerated. The protocol of [17] is based on the realization of so-called
“XOT” (i.e., the receiver can also choose to receive the XOR of the two bits
sent) from two realizations of

(
2
1

)
−TO—the reversed version of

(
2
1

)
−OT. Note,

however, that the resulting reduction of
(
2
1

)
−OT to

(
2
1

)
−TO of [17] also requires

Θ(log(1/ε)) realizations of
(
2
1

)
−TO if ε is the tolerated failure probability.

1.1 Our Contribution

In [8], Crépeau and Sántha raised the question of whether it is possible to imple-
ment oblivious transfer in one direction using fewer instances of oblivious transfer
in the other. In this paper, we answer this question with yes by presenting a pro-
tocol that needs one instance of oblivious transfer, one bit of communication
and one bit of additional (local) randomness. All these parameters are optimal.
Our reduction is very simple; in other words, the reversed version of oblivious
transfer is basically just another way of looking at it. The symmetry is already
there, oblivious transfer is symmetric.

Our reduction can be used to transform any protocol for
(
2
1

)
−OT—offering

either computational or information-theoretic security for A and B, respec-
tively—into a protocol for oblivious transfer from B to A having exactly the
same security both for A and B as the original protocol; no additional failure
can occur.

1.2 Outline

In Section 3, we first present protocols from [1] that allow
(
2
1

)
−OT to be “stored”,

i.e., to transform oblivious transfer into an oblivious key. Then, we will show that

2

such an oblivious key can very easily be reversed—by a simple XOR executed
by both players on their local data. It follows that oblivious transfer can be
reversed equally easily. In Section 4 we present an even simpler protocol for
reversing oblivious transfer and prove its security.

2 Definitions and Security

We define
(
2
1

)
−OT as a black-box (see Figure 1).

Definition 1. By
(
2
1

)
−OT or chosen one-out-of-two oblivious transfer we de-

note the following primitive between a sender A and a receiver B. A has two
inputs b0 and b1 and no output, and B has input c and output y such that
y = bc.

(
2
1

)
−OT

bc

c

b1

b0

A B

Fig. 1. Chosen one-out-of-two oblivious transfer.

For the reversed version of
(
2
1

)
−OT, where B is the sender and A is the receiver,

we will write
(
2
1

)
−TO.

This black-box model of oblivious transfer is called the ideal model, and it is
how the world is supposed to be: The players have no other way of accessing the
box than by the defined inputs and outputs: cheating is impossible. However, in
reality such a perfect box does normally not exist. It must be simulated by a
protocol. In this real model, the players can cheat in principle by not following
the rules. A protocol is called a secure implementation of oblivious transfer if an
adversary cannot do anything in the real model that he could not just as well
have done in the ideal model. Thus, it must be shown that for any adversary in
the real model, there exists an equivalent adversary in the ideal model: he gets
the same information and the honest player obtains the same outputs as in the
real model; the resulting views are indistinguishable.

We follow the formalism of [15] and [1] (see also [10]) to define when a pro-
tocol perfectly securely evaluates a function f : X × Y → U × V. A protocol
is a pair of algorithms A = (A1, A2) that can interact by two-way message ex-
change. A pair (A1, A2) of algorithms is admissible for protocol A if at least one
of the parties is honest, i.e., if A1 = A1 or A2 = A2 holds. (Note that in the
case where both parties are cheaters, no security is required.) By z, we denote
some additional auxiliary input that can potentially be used by both parties. For

3

instance, z could include information about previous executions of the protocol.
Note, however, that an honest party never makes use of z.

The Ideal Model. In the ideal model, the two parties can make use of a
trusted party to calculate the function. The algorithms B1 and B2 of the protocol
B = (B1, B2) receive the inputs x and y, respectively, and the auxiliary input z.
They send values x′ and y′ to the trusted party, who sends them back the values
u′ and v′—satisfying (u′, v′) = f(x′, y′). Finally, B1 and B2 output the values u
and v. The two honest algorithms B1 and B2 always send x′ = x and y′ = y to
the trusted party, and always output u = u′ and v = v′. Now, if B = (B1, B2) is
an admissible pair of algorithms for protocol B = (B1, B2), the joint execution
of f under B in the ideal model,

idealf,B(z)(x, y) ,

is the resulting output pair, given the inputs x and y and the auxiliary input z.

The Real Model. In the real model, the parties have to compute f by a
protocol Π = (A1, A2) without the help of a trusted party. Let A = (A1, A2)
be an admissible pair for A. Then the joint execution of Π under A in the real
model,

realΠ,A(z)(x, y) ,

is the resulting output pair, given the inputs x and y and the auxiliary input z.

Perfect Security: “Real = Ideal”. A protocol Π computes a function f
perfectly securely if, intuitively speaking, every “real” cheater has an equally
powerful counterpart in the ideal model. Definition 2 also applies to reduction
protocols from one functionality to another; here, the algorithms are allowed to
call an oracle which perfectly implements the given functionality.

Definition 2. A protocol Π computes f perfectly securely if for every admissible
A = (A1, A2) there exists an admissible B = (B1, B2)—as efficient as A1 and
with identical set of honest players—such that for all x ∈ X , x ∈ Y, and z ∈ Z,

realΠ,A(z)(x, y) ≡ idealf,B(z)(x, y)

holds, where ≡ means that the distributions are identical.

3 Storing and Reversing Oblivious Transfer

Oblivious transfer protocols rely either on tools borrowed from public-key cryp-
tography [18], [9] or on additional assumptions [2], [5], [19], [3], [22]. In the first
case, we have to deal with relatively slow algorithms which may be the bottleneck
of the protocol execution. In the second case, one depends on these additional

1 The running time of B must by polynomial in the running time of A.

4

assumptions being present at the time of the execution of the protocol. In both
cases it is, therefore, desirable to carry out as much of the computation as possi-
ble in advance, and to make the actual execution of oblivious transfer as fast and
simple as possible, based on this pre-computation. Actually, almost the entire
computation can be done beforehand: Protocols 1 and 2, proposed in [1], show
how

(
2
1

)
−OT can be transformed into a so-called oblivious key, and vice versa.

An oblivious key is, intuitively speaking, the distribution that arises when A
and B choose their inputs at random and execute

(
2
1

)
−OT.

Definition 3. By an oblivious key,
(
2
1

)
−OK, we denote the primitive where a

sample of two random variables U = (X0, X1) and V = (C, Y) is given to A
and B, respectively, where X0, X1, and C are independently and uniformly
distributed bits, and where Y = XC holds.

Note that
(
2
1

)
−OK is a key for oblivious transfer in very much the same sense

as a shared secret bit is an encryption key in the one-time pad.

BA

c(
2
1

)
−OT

choose x0, x1 ∈ {0, 1}
at random.

choose c ∈ {0, 1}
at random.

(
2
1

)
−OK

x0

x1
y

x0, x1 c, y

Protocol 1:
(
2
1

)
−OK from

(
2
1

)
−OT

The proofs that Protocols 1 and 2 are perfect single-copy reductions between
the primitives

(
2
1

)
−OT and

(
2
1

)
−OK are given in [1] (and straight-forward). Note

that both Protocols 1 and 2 work in the honest-but-curious model, whereas their
combination is even perfectly secure in the malicious model.

The distribution of
(
2
1

)
−OK is given and illustrated on the left hand side of

Figure 2.

PUV ((x0, x1), (c, y)) =
{

1/8 if y = xc

0 otherwise .

When the symbols of U and V are renamed in a suitable way, the distribu-
tion corresponds to the one arising when Shannon’s so-called “noisy-typewriter

5

(
2
1

)
−OT

bc = rc ⊕ Y

C, Y

m = c⊕ C

X0, X1

r1 := b1 ⊕X1−m

b0

b1

bc

c

r0, r1

(
2
1

)
−OK

m

r0 := b0 ⊕Xm

Protocol 2:
(
2
1

)
−OT from

(
2
1

)
−OK

A B

channel” [20] is used with random input (see on the right hand side of Fig-
ure 2). Obviously, this distribution is symmetric. On the other hand,

(
2
1

)
−OK

is equivalent to
(
2
1

)
−OT, which is, hence, symmetric as well: A single instance

of
(
2
1

)
−TO allows for generating a realization of

(
2
1

)
−OT. The reduction is not

only single-copy but also perfect, i.e., unconditionally secure without any error.
This solves an open problem posed in [8] in a very simple way. Lemma 1 shows
how the values in the distribution of a

(
2
1

)
−OK must be renamed in order for

the oblivious key to be reversed.

(1, 0)

(0, 1)

(0, 0)

(1, 1)

(1, 0)

(0, 1)

(0, 0)

V = (C, Y)U = (X0, X1)

(1, 1)

VU

d

c

b

d

c

b

a a

Fig. 2. Left hand side: The distribution of
�
2
1

�
−OK. (Each edge is a possible com-

bination with probability 1/8.) Right hand side: The distribution arising from the
“noisy-typewriter channel.” Obviously, the two distributions are equivalent.

Lemma 1. Let X0, X1, C, and Y be binary random variables and let (U, V) =
((X0, X1), (C, Y)) be a

(
2
1

)
−OK. Then ((X0, X1), (C, Y)) := ((Y,C ⊕ Y), (X0 ⊕

X1, X0)) is a
(
2
1

)
−OK as well.

6

Proof. Y = X0 = XC⊕C(X0⊕X1) = Y ⊕C(X0⊕X1) = X0⊕(X0⊕X1)C = XC .

A formal proof of the security of this transformation is omitted here. Intu-
itively, the privacy of both players is preserved since the ignorance of one player
about the XOR of X0 and X1 is transformed into the ignorance of C, and vice
versa.

4 Optimally Reversing Oblivious Transfer

The protocol outlined in the end of Section 3 requires three bits of additional
communication. We present an even simpler protocol, Protocol 3, using only one
bit of additional communication from A to B; this is optimal.

r ⊕ c

r

a

b0 ⊕ b1 (
2
1

)
−TO

Protocol 3:
(
2
1

)
−OT from

(
2
1

)
−TO

at random
choose r ∈ {0, 1}

m
m := b0 ⊕ a

(
2
1

)
−OT

b0

b1

bc

c

A B

bc := r ⊕m

Theorem 1. Protocol 3 perfectly securely reduces
(
2
1

)
−OT to one realization of(

2
1

)
−TO.

Proof. Let first both parties be honest, i.e., A = (A1, A2) in Protocol 3. Then
we have, for all (b0, b1) ∈ {0, 1}2, c ∈ {0, 1}, and z ∈ Z,

real(2
1)−OT,A(z)((b0, b1), c) = (⊥, r ⊕ (b0 ⊕ a))

= (⊥, b0 ⊕ (b0 ⊕ b1)c)
= (⊥, bc)
= ideal(2

1)−OT,B(z)((b0, b1), c) .

Let now the first party be honest, i.e., A = (A1, A2). In the real model,
A2 receives (c, z) and sends (a0, a1) = a(c, z) to

(
2
1

)
−TO. Then he receives

7

m = b0⊕ab0⊕b1 , and outputs v(c, z, a0, a1,m). Let the adversary B2 in the ideal
model be defined as follows: On inputs (c, z), he sends (c, z) to A2, and gets
(a0, a1) = a(c, z) back. He sends c := a0⊕ a1 to

(
2
1

)
−OT and gets bc back. Then

he sends m := bc ⊕ a0 to A2, gets v = v(c, z, a0, a1,m) back and outputs v.
Since

m = a0 ⊕ bc = a0 ⊕ ba0⊕a1 = b0 ⊕ a0 ⊕ (b0 ⊕ b1)(a0 ⊕ a1) = b0 ⊕ ab0⊕b1 ,

we have, for all (b0, b1) ∈ {0, 1}2, c ∈ {0, 1}, and z ∈ Z,

real(2
1)−OT,A(z)((b0, b1), c) = (⊥, v(c, z, a0, a1,m))

= (⊥, v(c, z, a0, a1, b0 ⊕ ab0⊕b1))
≡ (⊥, v(c, z, a0, a1, b0 ⊕ ab0⊕b1))
= (⊥, v(c, z, a0, a1,m))
= ideal(2

1)−OT,(B1,B2)(z)((b0, b1), c) .

Assume now that the second party is honest, i.e., A = (A1, A2). In the
real model, A1 receives ((b0, b1), z) and sends d = d((b0, b1), z) to

(
2
1

)
−TO,

which returns l = r ⊕ dc. Then, he sends m = m((b0, b1), z, l) to A2 and
outputs u((b0, b1), z, d, l,m). Let the adversary B1 in the ideal model be de-
fined as follows: On inputs ((b0, b1), z), B1 sends ((b0, b1), z) to A1 and gets
d = d((b0, b1), z) back. He chooses l uniformly at random and sends it to A1,
who sends m = m((b0, b1), z, l) and u = u((b0, b1), z, d, l, m) back. He sends
(l ⊕m, l ⊕m⊕ d) to

(
2
1

)
−OT and outputs u.

The honest player will output l ⊕m⊕ cd. Since l = r ⊕ dc and r is uniform
and independent of everything else, l is uniform and independent as well, which
means that it has the same joint distribution as l with everything else. Therefore
we have, for all (b0, b1) ∈ {0, 1}2, c ∈ {0, 1}, and z ∈ Z,

real(2
1)−OT,A(z)((b0, b1), c) = (u((b0, b1), z, d, l,m), r ⊕m)

= (u((b0, b1), z, d, l,m, l ⊕ dc⊕m)

≡ (u((b0, b1), z, d, l,m, l ⊕ dc⊕m)
= ideal(2

1)−OT,B(z)((b0, b1), c) .

Obviously, the simulated adversary is as efficient as the real adversary. 2

Our protocol is optimal: First of all, since it is impossible to construct un-
conditionally secure oblivious transfer from scratch, using a single instance of(
2
1

)
−TO is optimal. Since

(
2
1

)
−TO does not allow any communication from Bob

to Alice, but
(
2
1

)
−OT does allow one bit of communication, any protocol must

communicate at least one bit. Furthermore, there cannot exist a protocol where
Bob does not use any randomness, because then his inputs to

(
2
1

)
−TO would be

8

deterministic functions of c. These functions could not both be constant, since
then the output of

(
2
1

)
−TO would not depend on c and be useless, and therefore

no oblivious transfer would be possible. But if the functions are not constant, A
is able to obtain information about c.

5 Oblivious Linear-Function Evaluation

In contrast to
(
2
1

)
−OT, all the other forms of oblivious transfer cannot be re-

versed without loss, i.e., in the perfect single-copy sense of Sections 3 and 4. This
can easily be seen from the monotones, defined in [23]: A primitive can only be
reversed without loss if

H(Y ↘ X|X) = H(X ↘ Y |Y),

and
(
2
1

)
−OT is the only example of

(
n
k

)
−OTl having this property.

In this section, we present another natural generalization of oblivious transfer
to strings that can be reversed perfectly: oblivious linear-function evaluation
over GF (q) or GF (q)−OLFE for short. Roughly speaking, the sender’s input
is a linear function f : x 7→ y = a0 + a1x, where a0, a1, x, y ∈ GF (q), and the
receiver’s input is an argument x ∈ GF (q) for which he then learns the evaluation
of the function, y = f(x) (see Figure 3). GF (q)−OLFE is a special case of
oblivious polynomial evaluation [16]. It can easily be verified that GF (2)−OLFE
is equivalent to

(
2
1

)
−OT. Furthermore, [19] shows that with one instance of

GF (q)−OLFE a very simple commitment scheme can be implemented, which
allows to commit to a value x ∈ GF (q). The scheme is perfectly hiding and
1/q-binding.

GF (q)−OLFE
y = a0 + a1x

A B

a0

a1

x

Fig. 3. Oblivious linear-function evaluation over GF (q).

The protocols of Sections 3 and 4 generalize to GF (q)−OLFE in a straight-
forward way: GF (q)−OLFE is, as oblivious transfer, equivalent to a non-inter-
active key—and can, therefore, be stored in the same sense. Moreover, this key
is, as

(
2
1

)
−OK, symmetric. Hence, GF (q)−OLFE from A to B can be reduced to

GF (q)−OLFE from B to A—GF (q)−EFLO for short—in a perfect and single-
copy sense. Protocol 4 is, in addition, optimal with respect to the required com-
munication.

9

BA

m

at random

r

a0

a1

x

x

r + a1x

a1

m := a0 + (r + a1x)

y := m− r y = a0 + a1x

Protocol 4: GF (q)−OLFE from GF (q)−EFLO

choose r ∈ GF (q)

GF (q)−OLFE

GF (q)−EFLO

6 Concluding Remarks

We have shown that chosen one-out-of-two bit oblivious transfer can be opti-
mally reversed very easily. Furthermore, we have have presented a more general
primitive with the same property: oblivious linear-function evaluation.

Acknowledgments

This work was carried out while both authors were with Université de Montréal,
Canada. This research was supported by Canada’s NSERC, Québec’s FQRNT,
and Switzerland’s SNF.

References

1. D. Beaver, Precomputing oblivious transfer, Advances in Cryptology—Proceedings
of CRYPTO ’95, LNCS, Vol. 963, pp. 97–109, Springer-Verlag, 1992.

2. C. H. Bennett, G. Brassard, C. Crépeau, and H. Skubiszewska, Practical quan-
tum oblivious transfer, Advances in Cryptology—Proceedings of EUROCRYPT ’91,
LNCS, Vol. 576, pp. 351–366, Springer-Verlag, 1992.

3. G. Brassard, C. Crépeau, and S. Wolf, Oblivious transfers and privacy amplifica-
tion, Journal of Cryptology, Vol. 16, No. 4, pp. 219–237, 2003.

4. C. Crépeau, Correct and private reductions among oblivious transfers, Ph. D. The-
sis, Massachusetts Institute of Technology, 1990.

5. C. Crépeau, Efficient cryptographic protocols based on noisy channels, Advances in
Cryptology—Proceedings of CRYPTO ’97, LNCS, Vol. 1233, pp. 306–317, Springer-
Verlag, 1997.

6. C. Crépeau and J. Kilian, Achieving oblivious transfer using weakened security
assumptions, Proceedings of the 28th Symposium on Foundations of Computer Sci-
ence (FOCS ’88), pp. 42–52, IEEE, 1988.

10

7. C. Crépeau, K. Morozov, and S. Wolf, Efficient unconditional oblivious transfer
from almost any noisy channel, Proceedings of Fourth Conference on Security in
Communication Networks (SCN) ’04, LNCS, Springer-Verlag, 2004.

8. C. Crépeau and M. Sántha, On the reversibility of oblivious transfer, Advances
in Cryptology—Proceedings of EUROCRYPT ’91, LNCS, Vol. 547, pp. 106–113,
Springer-Verlag, 1991.

9. S. Even, O. Goldreich, and A. Lempel, A randomized protocol for signing contracts,
Communications of the ACM, Vol. 28, No. 6, pp. 637–647, 1985.

10. O. Goldreich, Foundations of Cryptography, Volume II: Basic Applications, Cam-
bridge University Press, 2004.

11. H. Imai, J. Müller-Quade, A. Nascimento, and A. Winter, Rates for bit commit-
ment and coin tossing from noisy correlation, Proceedings of the IEEE International
Symposium on Information Theory (ISIT) ’04, IEEE, 2004.

12. H. Imai, A. Nascimento, and A. Winter, Oblivious transfer from any genuine noise,
unpublished manuscript, 2004.

13. J. Kilian, Founding cryptography on oblivious transfer, Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing (STOC ’88), pp. 20–31,
1988.

14. D. Mayers, Unconditionally secure quantum bit commitment is impossible, Phys.
Rev. Lett., Vol. 78, pp. 3414–3417, 1997.

15. S. Micali and P. Rogaway, Secure computation, Advances in Cryptol-
ogy—Proceedings of CRYPTO ’91, LNCS, Vol. 576, pp. 392–404, Springer-Verlag,
1992.

16. M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation, Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing (STOC ’99),
pp. 245-354, 1999.

17. R. Ostrovsky, R. Venkatesan, and M. Yung, Fair games against an all-powerful ad-
versary, AMS DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, Vol. 13, pp. 155–169, 1990.

18. M. Rabin, How to exchange secrets by oblivious transfer, Technical Report TR-81,
Harvard Aiken Computation Laboratory, 1981.

19. R. L. Rivest, Unconditionally secure commitment and oblivious transfer schemes
using private channels and a trusted initializer, unpublished manuscript, 1999.

20. C. E. Shannon, A mathematical theory of communication, Bell System Technical
Journal, Vol. 27, pp. 379–423, 623–656, 1948.

21. A. Winter, A. Nascimento, and H. Imai, Commitment capacity of discrete memo-
ryless channels, Cryptography and Coding, LNCS, Vol. 2898, pp. 35–51, Springer-
Verlag, 2003.

22. S. Wolf and J. Wullschleger, Zero-error information and applications in cryptogra-
phy, Information Theory Workshop (ITW) ’04, IEEE, 2004.

23. S. Wolf and J. Wullschleger. New monotones and lower bounds in unconditional
two-party computation. In Advances in Cryptology—Proceedings of CRYPTO ’05,
LNCS, Vol. 3621, pp. 467–477, Springer-Verlag, 2005.

24. A. D. Wyner, The wire-tap channel, Bell System Technical Journal, Vol. 54, No. 8,
pp. 1355–1387, 1975.

25. R. W. Yeung, A new outlook on Shannon’s information measures, IEEE Transac-
tions on Information Theory, Vol. 37, No. 3, pp. 466–474, 1991.

11

